Precision
 Direct To Sensor Data Acquisition

Thermocouple

Strip Chart Software

Origin

Labview

Visual Basic, C, C++

Test Point

Direct To Excel

H P VEE

DASYLab

MicroLab

SuperScope II

Direct T o Sensor Accuracies

VOLTAGE M easurement ${ }^{1,2}$

	Absolute Accuracy	
Range	No Integration	1ms Integration
$\pm 5 \mathrm{~V}$	$\pm 1.5 \mathrm{mV}$	$\pm .7 \mathrm{mV}$
$\pm .6 \mathrm{~V}$	$\pm 150 \mathrm{uV}$	$\pm 75 \mathrm{uV}$
$\pm 80 \mathrm{mV}$	$\pm 45 \mu \mathrm{~V}$	$\pm 15 \mu \mathrm{~V}$
$\pm 10 \mathrm{mV}$	$\pm 30 \mathrm{uV}$	$\pm 10 \mu \mathrm{~V}$

THERMOCOUPLE M easurement ${ }^{1,2}$
instruNet supports a direct connection to thermocouples with the following measurement accuracies. The table excludes thermocouple device
errors yet includes cold junction compenstation, voltage measurement, \& linearization errors.

Thermocouple Range		Accuracy
J	-210 C to -100 C	$\pm .8 \mathrm{C}$
	-100 C to 1200 C	$\pm .5 \mathrm{C}$
K	-200 C to -50 C	$\pm .8 \mathrm{C}$
	-50 C to 1360 C	$\pm .6 \mathrm{C}$
T	-200 C to -100 C	$\pm .8 \mathrm{C}$
	-100 C to 400 C	$\pm .5 \mathrm{C}$
E	-200 C to -60 C	$\pm .7 \mathrm{C}$
	-60 C to 1000 C	$\pm .5 \mathrm{C}$
R	-50 C to 70 C	$\pm 3.5 \mathrm{C}$
	70 C to 1768 C	$\pm 2.0 \mathrm{C}$
S	-50 C to 150 C	$\pm 2.8 \mathrm{C}$
	150 C to 1768 C	$\pm 1.8 \mathrm{C}$
B	250 C to 600 C	$\pm 3.8 \mathrm{C}$
	600 C to 1300 C	$\pm 2.0 \mathrm{C}$
N	-200 C to -110 C	$\pm 1.3 \mathrm{C}$
	-110 C to 1260 C	$\pm .8 \mathrm{C}$

THERMIST OR M easurement ${ }^{1,2}$ instruNet supports a direct connection to YSI/Omega 4xx and 4xxxx series thermistors, requiring one external shunt resistor. The table excludes thermistor device errors; yet includes thermistor and shunt self-heating, shunt initial accuracy, voltage measurement, and linearization errors.
$.025 \%$ shunt $^{3} .1 \%$ shunt 4
Therm. Range Shunt Vexc. Accuracy Accuracy

2252	-80	to 40 C	47 K	4.9 V	$\pm .2 \mathrm{C}$
$\pm .24 \mathrm{C}$					

$10 \mathrm{~K} \quad-80$ to $40 \mathrm{C} 100 \mathrm{~K} \quad 4.9 \mathrm{~V} \quad \pm .3 \mathrm{C} \pm .32 \mathrm{C}$
$10 \mathrm{~K} \quad 0$ to $70 \mathrm{C} \quad 10 \mathrm{~K} \quad .55 \mathrm{~V} \quad \pm .1 \mathrm{C} \pm .12 \mathrm{C}$

RESIST ANCE M easurement ${ }^{1,2}$ instruNet measures resistances directly, requiring one external shunt resistor. The table accuracy, and voltage measurement errors.

		Vexc. $\begin{array}{r}.025 \% \\ \text { accur }\end{array}$.1\% shl
Range Sh			
0-100	10K	$4.9 \mathrm{~V} \pm .14 \Omega$	$\pm .22 \Omega$
$0-1 \mathrm{~K} \Omega$	10K	$4.9 \mathrm{~V} \pm .8 \Omega$	$\pm 1.6 \Omega$
$0-10 \mathrm{~K} \Omega$	100K	$4.9 \mathrm{~V} \quad \pm 6 \Omega$	$\pm 14 \Omega$
$0-100 \mathrm{~K} \Omega$	100K	$4.9 \mathrm{~V} \pm 120 \Omega$	$\pm 195 \Omega$
$0-1 \mathrm{M} \Omega$	1M	$4.9 \mathrm{~V} \pm 2.4 \mathrm{~K} \Omega$	$\pm 3 \mathrm{~K} \Omega$
CURRENT M easurement ${ }^{1,2}$			
instruNet measures current directly, requiring one external shunt resistor. The table includes shunt self-heating, shunt initial accuracy, and voltage measurement errors.			
		. 025% shunt ${ }^{3}$	1% shunt ${ }^{4}$
Range	Shunt	t Accuracy A	Accuracy
0 to 10uA	4.7 K	$\pm 6 \mathrm{nA}$	$\pm 15 \mathrm{nA}$
0 to 100 uA	4.7K	$\pm 40 \mathrm{nA}$	$\pm 120 \mathrm{nA}$
0 to 1 mA	4.7K	$\pm .4 \mathrm{uA}$	$\pm 1.2 \mathrm{uA}$
0 to 20 mA	10	$\pm 12 \mathrm{uA}$	$\pm 30 \mathrm{uA}$
0 to 100 mA	A	$\pm .1 \mathrm{~mA}$	$\pm .18 \mathrm{~mA}$
0 to 1A	0.1	$\pm 1.2 \mathrm{~mA}$	$\pm 2 \mathrm{~mA}$

RT D M easurement ${ }^{1,2}$
instruNet supports a direct connection to .00385 and . 00392 RTD's between 100 and 1 Kohms, requiring one external shunt resistor. The table excludes RID device accuracy, voltage measurement, \& linearization errors.

. 025% shunt ${ }^{3} .1 \%$ shun | RTD | Range | Shunt | Vexc. Accuracy | Accuracy | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | $0-200 \mathrm{C}$ | 1 K | .5 V | $\pm .4 \mathrm{C}$ | $\pm .7 \mathrm{C}$ |

$100 \quad 0-850 \mathrm{C} \quad 2 \mathrm{~K} \quad .45 \mathrm{~V} \quad \pm 1 \mathrm{C} \quad \pm 2 \mathrm{C}$
$500 \quad 0-200 \mathrm{C} \quad 4.7 \mathrm{~K} \quad .45 \mathrm{~V} \quad \pm .4 \mathrm{C} \quad \pm .7 \mathrm{C}$
$500 \quad 0-850 \mathrm{C} \quad 10 \mathrm{~K} \quad 4.5 \mathrm{~V} \quad \pm .9 \mathrm{C} \quad \pm 2 \mathrm{C}$
$1000 \quad 0-200 \mathrm{C} \quad 10 \mathrm{~K} \quad .5 \mathrm{~V} \quad \pm .4 \mathrm{C} \quad \pm .7 \mathrm{C}$
$1000 \quad 0-850 \mathrm{C} \quad 20 \mathrm{~K} \quad 4.5 \mathrm{~V} \quad \pm .9 \mathrm{C} \pm 1.9 \mathrm{C}$

Welcome

- High Accuracy Data Acquisition Boxes attach to Windows 95/NT \& Macintosh Computers.
- Each Box: 16se/8di 14bit analog inputs, 8 analog outputs, and 8 digital I/O lines.
- Each PCI/Nubus Controllers: 10 Counter/ Timer Channels.
- Reduce noise by placing boxes near sensors and 0-1000 feet from noisy computer.
- Signal Conditioning Amplifiers on each input.
- Direct Connect to RTD, Thermocouple, Voltage, Thermistor, Bridge \& Strain Gage Sensors.
- $166 \mathrm{Ks} /$ sec throughput to Ram or to Disk.

Specifications ${ }^{1}$

16se/8di Analog Inputs	
Channels	$16 \mathrm{se} / 8 \mathrm{di} ; 14 \mathrm{bit} 4 \mu \mathrm{~s}$ a/d
Ranges	$+5 \mathrm{~V},+.6 \mathrm{~V},+78 \mathrm{mV},+8 \mathrm{mV}$
Throughput	$166 \mathrm{Ks} / \mathrm{sec}$ max aggregate
SNR	78 dB
Linearity	Diff. + 1.5 LSB; Integral + 2 LSB
OverVoltage	+15 V (power on or off)
Impedance	$>10 \mathrm{M} \Omega 1 \%, 3 \mathrm{pf}$
CM Voltage	+5 V min (CMR + 80dB)
Temp. Drift	Gain:+ 5ppm/ ${ }^{\circ} \mathrm{C}$ of FSR
	Offset: Self-cal'ed to 0
Time Stability	Gain: $27 \mathrm{ppm} / 1 \mathrm{yr}$ typ
	Offset: Self-cal'ed to 0

8 Analog 0 utputs

nels	8Channels, 8bit D/A
Range	\#Net-100/100B: + 5V @ 4mA \#Net-100HC: + 5V @ 15mA
Protection	Short-to-ground continuous
Settling Time	$4 \mu \mathrm{~s}$ (to $+1 / 2 \mathrm{LSB},+5 \mathrm{~V}$ step)
Accuracy	+0.4\%
Coupling	+20mV Digital Coupling
Drift	$+10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of 5 V FSR; $+5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift
Readback	See Voltage Input Accurac

8 D igital I/O

I/O Lines 8 non-latching inputs and 8 latching outputs at 8 bidirectional terminals.
Inputs $\quad \mathrm{V}_{\mathrm{IH}}=3.2 \mathrm{~V}$ min to 12 V max; $V_{\text {IL }}=1.0 \mathrm{~V}$ max to -12 Vmin $\mathrm{I}_{\mathrm{IH}}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{i}}=3.2 \mathrm{~V}$ IIL $=-.5 \mathrm{~mA} \max$
Outputs $\quad \mathrm{VOH}_{\mathrm{OH}}=2 \mathrm{~V} \min$ to 5 Vmax ; $\mathrm{OOH}=2 \mathrm{Vmin}$ to 5 Vmax
$\mathrm{IOH}=-.5 \mathrm{~mA}$ max. $\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~A}$ max, $\mathrm{V}_{\mathrm{O}}=1.7 \mathrm{~V}$; $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ max, $\mathrm{V}_{\mathrm{O}}=7 \mathrm{~V}$

Maximum specifications, $0-70^{\circ} \mathrm{C}$, no

condensation, \#iNet-100xx Rev 3.
${ }^{2} 0.001$ sec Integration, accuracies are typical within 2 std dev, temperature has not
${ }_{3}$ changed since self-calibration.
\#IN130-resistance-0.025\%-20 (.025\% initial accuracy, $20 \mathrm{ppm} / \mathrm{C}, 116 \mathrm{C} /$ Watt) shunt resistor \#RN60E xxxx B (.1\% initial accuracy,
$25 \mathrm{ppm} / \mathrm{C}, 116 \mathrm{C} /$ Watt) shunt resistor.

FreeinstruN et Strip Chart for Windows 95/NT and M acintosh

FreeVisual Basic, C and $\mathrm{C}++$ Interface

o instruNet runet.com

- Includes Strip Chart/Oscilloscope Software.
- Boxes powered by 32bit DSP PCI or PC-Card card in 95/NT/Macintosh computer.
- Optional Low Cost Optical Isolation.
- Programmable from C, Visual Basic, TestPoint, HP Vee, DASYLab, Orgin, MicroLab, Famous, \& SuperScope II. LabVIEW drivers available.
- Each channel has independently programmable analog filters, integration time, voltage range, sample rate and digital filters ($\mathbb{(P , \text { r. вp, вр вs. }}$
- Returns Engineering Units
- Solid Aluminum Construction.

W ire D irectly to C ommon Sensors via U niversal Screw T erminals

Digitize D irectly into M icrosoft Excel for Windows 95/NT

DASYLab for Windows 95/N T

LabVIEW for M acintosh and Windows 95/N T

SuperScopell for M acintosh

HP VEE Graphical
Programming for Windows 95/NT

MicroLab
for Windows95/NT

TestPoint for Windows 95/N T

Overview

instruNet provides ten's of microVolts of absolute accuracy instead of ten's of milliVolts, at the same cost, and at the same throughput rates as typical general purpose data acquisition boards. It does this with a completely different topology where the analog electronics are close to the sensor in electri-cally-quiet boxes outside your PC, and the noisy digital electronics are left inside the computer. The external boxes contain signal conditioning amplifiers for each channel, and can therefore directly attach to sensors such as thermocouples, ysi thermistors, RTD's, strain gages, resistance sources, current sources, and voltage sources. The box then returns engineering units to your PC (e.g. " ${ }^{\circ} \mathrm{C}$ ", "Volts", "Amps"). At the heart of the real-time system is a PCI or PC-Card (1/98) controller board that plugs into a Macintosh or Windows $95 /$ NT x86 computer. Each controller contains a 32bit microprocessor with 256KB of RAM that manages the external "network" of devices. All realtime tasks are off-loaded to this processor, therefore the host computer is not burdened with real-time issues. Each instruNet 100 Box provides:

- 16se/ 8di 14bit Analog Inputs (A/Ds) with
$\pm 5 \mathrm{~V}, \pm .6 \mathrm{~V}, \pm .08 \mathrm{~V} \& \pm .01 \mathrm{~V}$ range
- $8 \pm 5 \mathrm{~V}$ 8bit Analog Outputs (D/As)
- 8 Digital I/O Lines

The instruNet 100 includes 44 screw terminals. The 100B version adds 16 BNC's for analog inputs. The 100 HC version provides $15 \mathrm{~mA} / 10 \mathrm{KpF}$ voltage output drive capability, instead of 4 mA . The controller's themselves provide 10 counter/ timer channels that each can function as a digital input bit, a digital output bit, a clock output channel, or a period measurement input channel.

FREE Strip Chart/Scope Software

"instruNet World", is a FREE application program. It manages, monitors and operates the instruNet system. It digitizes long continuous waveforms, spools them to disk, views incoming waveforms in real-time and then allows post acquisition viewing - much like an oscilloscope or strip chart recorder. instruNet World provides a spreadsheet-like environment where one can set and view channel parameters such as sensor type, integration time, analog filter, and digital filter. Each channel has it's own row in the spreadsheet, with the various options in the columns.

Performance

The instruNet system supports the digitizing of multiple channels at a maximum aggregate sample rate of $166 \mathrm{ks} / \mathrm{sec}$, where each channel can be digitized at it's own rate. This maximum rate decreases when: the total cable length increases, optical isolation is used, digital filtering or plotting is enabled, more boxes are added, more channels are digitized, amplifier gain is increased, or spooling to disk is added. Each channel can be independently digitally filtered with low-pass, high-pass, bandstop and band-pass filters; where the filter specification for each channel is independently set in software.

Each channel provides a programmable analog low pass filter with programmable A/D measurement integration time. The network can be hundreds of feet long and can support multiple hardware devices connected together in a daisy-chain configuration. The start of digitizing can be triggered from any channel. There are no jumpers or pots; the system automatically self-calibrates on power-up. Since instruNet is modular, it can easily be expanded as needs evolve. One can easily move the system hardware from one computer family to another, since the various controllers are functionally identical.

Programming

instruNet includes drivers callable from any 32bit C compiler, and Visual Basic ≥ 4.0. This involves 1 main routine, called "iNet()", that reads or writes any of the options or channels on the system.

Compatibility

instruNet is Compatible with SuperScope II Macintosh; Microsoft Excel ≥ 8 for Windows; TestPoint, HP VEE, Origin, MicroLab, DASYLab, Famous, and drivers are available for LabVIEW (Mac \& Windows). The system is easily controlled with any 32bit C compiler \& Visual BASIC ≥ 4.0 (drivers included free). instruNet runs on a 68 K or PPC Macintosh, Windows $95 /$ NT computer with $\geq 8 \mathrm{MB}$ of RAM recommended.

Part \#	Product
iNet-100 instruNet External A/D Box with 3 m cable (requires inet2xx Controller Card). Provides 16se/8di Analog Inputs, 8 Analog Outputs, and 8 Digital I/0 lines, w/screw terminals.	
iNet-100B instruNet Extermal A/D Box (same as iNet-100, yet w/add'l 16 BNC Connectors)	
iNet-100HC instruNet External A/D Box (same as iNet-100, yet w/ 15mA/.01uF Vout)	
iNet-200	PCI-Bus Controller Card for Windows 95/NT or Macintosh (controls up to 16 iNet-100's)
iNet-220	Nubus Controller Card for Macintosh (controls up to 16 iNet-100's)
iNet-230	PC-Cand Controller (Type II, requires iNet-311/322 supply, Avail 1/98)
iNet-300	Power Adaptor, if using 4 or more iNet-10's, (no signal isolation, requires iNet-311/322 power supply)
iNet-330	Optical Isolator, isolates power and signal lines (replaces iNet-300; requires a power supply)
iNet-311	Power Supply, 110V to 5V/.8A \& $\pm 12 \mathrm{~V} / 24 \mathrm{~A}$, used w/iNet300/330/230 (use 1 per 3 addl boxes)
iNet-322	Power Supply, 220 V to 5V2A \& $\pm 12 \mathrm{~V} / .5 \mathrm{~A}$, used wi/ietet30/330/230 (use 1 per 5 addl boxes), CE, 2prong euro
iNet-340	DIN Rail Mounting Bracket for iNet-100xx.
iNet-34S	34Pin Screw Terminal Panel, breaks out Digital I/0 on iNet-20/220 Controller (iNet34W3F cable req'd).
iNet-34W3F	3ft 34wire Ribbon Cable, to connect iNet-34S to iNet-200/220 Controller Digital I/0.

